RB IIT Academy SR MAINSTEST 3

1) A salt ' X ' on heating liberate one coloured gas and another coloureless gas. Both the gases are paramagnetic. The salt ' X 'may be
A) NaNO_{3}
B) KNO_{3}
C) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D) LiNO_{3}
2) In the castner-kellner process, the gases that are liberated in the middle and outer compartments are
A) $\mathrm{H}_{2} \& \mathrm{Cl}_{2}$
B) $C l_{2} \& H_{2}$
C) $\mathrm{Cl}_{2} \& \mathrm{O}_{2}$
D) $\mathrm{O}_{2} \& \mathrm{Cl}_{2}$
3) The solubilites of carbonates decrease down the magnesium group. This is due to a decrease in
A) Hydration energies of cations
B) inter-ionic attraction
C) entropy of solution formation
D) Lattice energies of solids
4) A certain compound (X) gives a brick red flame test. When KI solution is added to a solution of (X) in presence of acetic acid, lodine is liberated which can be estimated by titration with Hypo. When a paste of (X) is heated with ethyl alcohol or acetone, a sweet smelling liquid is obtained, which is used as an anaesthetic. Identify (X)
A) CaCO_{3}
B) $\mathrm{Ca}(\mathrm{OH})_{2}$
C) $\mathrm{Ba}(\mathrm{OH})_{2}$
D) CaOCl_{2}
5) The reaction of ammonium chloride with $B C l_{3}$ at $140^{\circ} \mathrm{C}$ followed NaBH 4 gives product X. Which of the following statements is/are true for X is
(i) X is not isoelectronic with benzene
(ii) X undergoes addition reactionwith HCl
(iii) Electrophilic substitution rection on X is much faster than that of benzene.
(iv) X undergoes polymerization at $90^{\circ} C$.
A) (i) and (ii)
B) (ii) only
C) (ii) and (iii)
D) (i) and (iv)
6) A mixture of boron trichloride and hydrogen is subjected to silent electric discharge to form A and HCl .

A is mixed with NH_{3} and heated to $200^{\circ} \mathrm{C}$ to form B . The formula of B is
A) $B_{2} H_{6}$
B) $\mathrm{B}_{2} \mathrm{O}_{3}$
C) $\mathrm{H}_{3} \mathrm{BO}_{3}$
D) $B_{3} N_{3} H_{6}$
7) Which of the following statements is not correct about potash alum?
A) Its empirical formula is $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$
B) Its aqeous solutions is basic in nature
C) It is used in dyeing industries
D) Its aqueous solutions is acidic in nature
8) Name the structure of silicate in which three oxygen atoms of $\left[\mathrm{SiO}_{4}\right]^{4-}$ are shared:
A) Pyrosilicate
B) Sheet silicate
C) Linear chain silicate
D) Three dimensional sheet silicate
9) Which is incorrect statement
A) Sn^{2+} and $\mathrm{Fe}{ }^{3+}$ cannot co exist in same solution
B) The sum of oxidation states of carbon in carbon sub oxide is +4
C) PbI_{4} does not exist
D) Hydrocarbons are good reducing agents but not silanes
10) The polymeric silicate of the following in which three oxygens of each SiO_{4}^{4-} unit cell are shared by other SiO_{4}^{4-} unit cells is
A) chain silicates
B) frame work silicates
C) sheet silicates
D) all the above three
11) $\left(\begin{array}{lll}2 & 3 & 5 \\ 4 & 1 & 2 \\ 1 & 2 & 1\end{array}\right)=P+Q$ where P is a symmetric and Q is a skew-symmetric then $Q=$
A) $\left(\begin{array}{ccc}0 & \frac{-1}{2} & 2 \\ \frac{1}{2} & 0 & 0 \\ -2 & 0 & 0\end{array}\right)$
В) $\left(\begin{array}{ccc}0 & \frac{1}{2} & 1 \\ \frac{-1}{2} & 0 & 0 \\ -1 & 0 & 0\end{array}\right)$
C)
$\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0\end{array}\right)$
D) $\left(\begin{array}{ccc}0 & 2 & 3 \\ -2 & 0 & 4 \\ -3 & -4 & 0\end{array}\right)$
12) If A, B are two matrices such that $A B=B, B A=A$ then $A^{2}+B^{2}=$
A) $A+B$
B) $A-B$
C) B
D) $2 A+B$
13) A and B are two given matrices such that the order of A is 3×4, if $A^{\prime} B$ and $B A^{\prime}$ are both defined then
A) Order of B^{\prime} is 3×4
B) Order of B'A is 4×4
C) Order of $B^{\prime} A$ is 3×3
D) $B^{\prime} A$ is undefined
14) The value of a third order determinant is 11 , then the value of the square of the determinant formed by the cofactors will be
A) 11
B) 121
C) 1331
D) 14641
15) The determinant $\left|\begin{array}{ccc}x p+y & x & y \\ y p+z & y & z \\ 0 & x p+y & y p+z\end{array}\right|=0$ then x, y and z are in
A) x, y, z are in A.P
B) x, y, z are in G.P.
C) x, y, z are in H.P.
D) $x y, y z, z x$ are in A.P.
16) $\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}=a^{2},\left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}=b^{2}$ and $\left(x_{3}-x_{1}\right)^{2}+\left(y_{3}-y_{1}\right)^{2}=c^{2}$ then
$4\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|^{2}=$
A) $a b c(a+b+c)$
B) $(a+b+c)^{4}$
C) $(a+b+c)(a+b-c)(b+c-a)(c+a-b)$
D) $(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)$
17) If $\left|\begin{array}{lll}a & b & 1 \\ b & c & 1 \\ c & a & 1\end{array}\right|=2010$ then $\left|\begin{array}{lll}c-a & c-b & a b \\ a-b & a-c & b c \\ b-c & b-a & c a\end{array}\right|-\left|\begin{array}{lll}c-a & c-b & c^{2} \\ a-b & a-c & a^{2} \\ b-c & b-a & b^{2}\end{array}\right|=p$ then number rof positive integral diviors of p.
A) 36
B) 49
C) 64
D) 81
18) The number of 3×3 non-singular matrices with four entries as 1 and all other entries 0 , is
A) 6
B) at least 7
C) less then 4
D) 5
19) If the system of equations $x-c y-b z=0, c x-y-a z=0, b x-a y-z=0$ has a non-zero solution then $a^{2}+b^{2}+c^{2}-2 a b c=$
A) 1
B) 2
C) 3
D) 4
20) $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4\end{array}\right], 6 A^{-1}=A^{2}+c A+d I$, then (c, d)
A) $(-6,11)$
B) $(-11,6)$
C) $(11,6)$
D) $(6,11)$
21) A ball of mass 0.2 kg is thrown vertically upwards by applying a force by hand. If the hand moves 0.2 m while applying the force and the ball goes upto 2 m height further, find the magnitude of the force. $\left(g=10 \mathrm{~ms}^{-2}\right)$
A) 20 N
B) 22 N
C) 4 N
D) 16 N
22) A ball of mass 10 gm dropped from a height of 5 m hits the floor and rebounds to a height of 1.25 m . If the ball is in contact with the ground for 0.1 s , the force exerted by the ground on the ball is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A) 0.5 N
B) 1.5 N
C) 0.15 N
D) 2.5 N
23) Two persons are holding a rope of negligible weight tightly at its ends so that it is horizontal. A 15 kg weAight is attached to rope at the midpoint which now no more remains horizontal. The minimum tension required to completely straighten the rope is
A) 150 N
B) 75 N
C) 50 N
D) Infinitely large
24) Three forces $20 \sqrt{2} N, 20 \sqrt{2} N$ and $40 N$ are acting along x, y and $z-$ axes respectively on a $5 \sqrt{2} \mathrm{~kg}$ mass at rest at the origin. The magnitude of its displacement after 5 s is, ℓ meters then $\ell=$
A) 50
B) 25
C) 60
D) 100
25) A body of mass 5 kg starts from the origin with an initial velocity $\vec{u}=30 \hat{i}+40 \hat{j} \mathrm{~ms}^{-1}$ If a constant force $\vec{F}=-(\hat{i}+5 \hat{j}) N$ acts on the body, the time in which the $y-$ component of the velocity becomes zero is ℓ seconds then $\ell=$
A) 5
B) 20
C) 40
D) 80
26) A horizontal jet of water coming out of a pipe of the area of cross-section $20 \mathrm{~cm}^{2}$ hits a vertical wall with a velocity of $10 \mathrm{~ms}^{-1}$ and rebounds with the same speed. The force exerted by water on the wall is k newtons then $k=$
A) 0.2
B) 10
C) 400
D) 200
27) The displacement of a body moving along a straight line is given by $S=b t^{n}$, where 'b' is a constant and ' t ' is time. For what value of ' n ' the body moves under the action of constant force?
A) $\frac{3}{2}$
B) 1
C) 2
D) $\frac{1}{2}$
28) A string of negligible mass going over a clamped pulley of mass m supports a block of mass M as shown in the figure. The force on the pulley by the clamp is given by

A) $\sqrt{2} M g$
B) $\sqrt{2} m g$
C) $\sqrt{(m g)^{2}+(M+m) g^{2}}$
D) $\sqrt{((M+m) g)^{2}+(M g)^{2}}$
29) Two masses M and m are connected by a weightless string. They are pulled by a force F on a frictionless horizontal surface. The tension in the string will be

A) $\frac{F M}{m+M}$
B) $\frac{F}{M+m}$
C) $\frac{F M}{m}$
D) $\frac{F m}{M+m}$

30)

A body of mass 3 kg is acted on by a force which varies as shown in the graph below. The momentum acquired is given by
$F(N)$

A) Zero
B) $5 \mathrm{~N}-\mathrm{s}$
C) $30 \mathrm{~N}-\mathrm{s}$
D) $50 \mathrm{~N}-\mathrm{s}$

